1. Water is flowing over all of the surfaces of a 3-inch diameter, 50 foot long cylinder in cross-flow such that equation 7.52 applies to determine the Nusselt number. The water is flowing at 1.0 mph at a bulk temperature of 68 °F over the 104 °F cylinder surface at steady state.

A. What is the heat loss rate in W?

\[q = h \cdot A \cdot (T_s - T_{infty}) \]

\[D = 3 \text{ in} \times 0.0254 \text{ m/in} = 0.0762 \text{ m} \]

\[A = \pi \times D \times L = \pi \times 0.25 \text{ ft} \times 50 \text{ ft} = 12.5\pi \text{ ft}^2 \times \frac{1 \text{ m}^2}{10.764 \text{ ft}^2} = 3.647 \text{ m}^2 \]

\[T_{infty} = 20 \text{ C} \quad T_s = 40 \text{ C} \]

Must determine \(h \).

In the correlation \(\text{Nu} = C \cdot \text{Re}_D^m \cdot \text{Pr}^{1/3} \), the \(C \) & \(m \) values change depending on the \(\text{Re} \) # (see T7.2)

Look up properties of water at film temperature of 30 °C (68 F = 20 C, 104 F = 40 C).

At 303 K, from Table A.6 (using the lever rule to get properties at 303K):

- specific volume = \(1/\text{density} = 1.004 \times 10^{-3} \text{ m}^3/\text{kg} \)
- viscosity = \(0.6 \times 769 + 0.4 \times 855 = 803.4 \times 10^{-6} \text{ Ns/m}^2 \)
- \(D = 0.25 \text{ ft} / 3.2808 \text{ ft/m} = 0.07512 \text{ m} \)
- speed = 1.0 mph = \(\frac{5280 \text{ ft}}{3600 \text{ s}} / 3.2808 \text{ ft/m} = 0.447 \text{ m/s} \)
- \(\text{Re} = \frac{vD/(\mu \cdot \text{spec. vol})}{(803.4 \times 10^{-6}) \cdot \frac{1.004 \times 10^{-3}}{1.004 \times 10^{-3}}} \quad \text{Re} = 42,228 \)

So, from Table 7.2, \(C = 0.027 \) & \(m = 0.805 \)

\[\text{Nu} = 0.027 \times \text{Re}^{0.805} \times \text{Pr}^{1/3} \]

Need more properties: \(\text{Pr} = 5.46 \quad k_f = 0.617 \text{ W/mK} \)

\[\text{Nu} = 0.027 \times (42,227)^{0.805} \times 5.46^{1/3} = 251.5 \]

\[h = k_f/D \times \text{Nu} = 0.617/0.0751 \times 251.5 = 2067 \text{ W/m}^2\text{-K} \]

Thus \(q = 2067 \times 3.647 \times 20 = 151,000 \text{ W} \)

B. Equation 7.53

\[\text{Nu}_D = C \times \text{Re}^m \times \text{Pr}^n \times \left(\frac{\text{Pr}}{\text{Pr}_{s}} \right)^{1/4} \]

\(\text{Re} \) is slightly different now, since all properties are evaluated at Tinfinity except Prs.

- specific volume = \(1/\text{density} = 1.0015 \times 10^{-3} \text{ m}^3/\text{kg} \)
- viscosity = \(0.6 \times 959 + 0.4 \times 1080 = 1007.4 \times 10^{-6} \text{ Ns/m}^2 \)
- \(D = 0.25 \text{ ft} / 3.2808 \text{ ft/m} = 0.0751 \text{ m} \)
- speed = 1.0 mph = \(\frac{5280 \text{ ft}}{3600 \text{ s}} / 3.2808 \text{ ft/m} = 0.447 \text{ m/s} \)
- \(\text{Re} = 0.447 \times 0.0751 / \{(1007.4 \times 10^{-6}) \times (1.0015 \times 10^{-3})\} \quad \text{Re} = 33,760 \)

So, from Table 7.4, \(C = 0.26 \) & \(m = 0.6 \) also \(n = 0.37 \) based on Pr # value < 10.

Need more properties: \(\text{Pr} = 7.00 \quad \text{Pr}_s = 4.34 \quad k_f = 0.603 \text{ W/mK} \)

(props at 293 except \(\text{Pr}_s \) at 313 K)
\[\text{Nu} = 0.26 \times (33,760)^{0.6} \times (7.00)^{0.37} \times (7.00/4.34)^{1/4} \]
\[\text{Nu} = 314 \]
\[h = \frac{k}{D} \times \text{Nu} = \frac{0.603}{.0751} \times 281 = 2519 \text{ W/m}^2\text{-K} \]

Thus \[q = 2256 \times 3.647 \times 20 = 184,000 \text{ W} \]

FOR EQUATION 7.54
all properties are at film temperature, so \(\text{Re} \) and \(\text{Pr} \) are the same as in part A.
\(\text{Re} = 42,228 \)
\(\text{Pr} = 5.46 \)
\(k_f = 0.617 \text{ W/mK} \)

\[\text{Nu}_D = 266.9 \]
\[h = \frac{k}{D} \times \text{Nu} = \frac{0.617}{.0751} \times 266.9 = 2192 \text{ W/m}^2\text{-K} \]
\[q = 2192 \times 3.647 \times 20 = 160,000 \text{ W} \]

So, all of the different correlations give reasonable answers (all same order of magnitude), but there’s over a 10% difference between the two correlations used in part A and part B.

C. Since we are already in the highest range for \(\text{Re} \) for the correlation, the \(C \) & \(m \) values will be the same if \(v \) increases (as long as it doesn’t cause \(\text{Re} > 400,000 \)... this correlation won’t work)
To double the \(q \), we must also double \(h \), since \(A \) & \(\text{(Ts-Tinf)} \) do not change.
To double \(h \), must double \(\text{Nu} \), since \(k_f \) and \(\text{Pr} \) do not change
To double \(\text{Nu} \), must double \(\text{Re}_D^m \), since \(C \) & \(\text{Pr}^{1/3} \) will not change.
\(\text{Re}_D^m \) can be rewritten as \(v^m D^m / \nu^m V_m \).
But \(D \), specific volume and viscosity are constants.
So \(v_2^m \) must be twice the value of \(v_1^m \)

\[v_2^m = 2 \times v_1^m \]
\[v_2/v_1 = 2^{(1/m)} \]
\[v_2 = 1 \text{ mph} \times 2^{(1/0.805)} = 2.37 \text{ mph} \]
This will only multiply the Reynolds number by 2.37, so the \(\text{Re} \) will be less than 400,000 and the \(C \) and \(m \) values in Table 7.2 still hold.
2. Air at 25 °C passes over a 50-W light bulb at 0.5 m/s. The light bulb may be approximated as a sphere with a 5 cm diameter and surface temperature of 140 °C.

A. What is the rate of heat loss by convection to the air?

B. If the surroundings temperature is also 25 °C and the emissivity of the light bulb is 0.89, what is the rate of heat loss by radiation to the air (again, you may assume the light bulb is a sphere and ignore the threaded base in your calculation)?

C. What total fraction of the light bulb energy (50-W) is lost as heat?

KNOWN: Conditions associated with airflow over a spherical light bulb of prescribed diameter and surface temperature.

FIND: Heat loss by convection.

SCHEMATIC:

![Schematic diagram](image)

ASSUMPTIONS:
1. Steady-state conditions
2. Uniform surface temperature

PROPERTIES:
- Table A-1, Air (T_{\infty} = 25°C, 1 atm): \(\nu = 15.71 \times 10^{-6} \text{ m}^2/\text{s}, k = 0.0261 \text{ W/m-K} \)
- Pr = 0.71, \(\mu = 183.6 \times 10^{-7} \text{ N s/m}^2 \); Table A-4, Air (T_s = 140°C, 1 atm): \(\mu = 235.5 \times 10^{-7} \text{ N s/m}^2 \)

ANALYSIS:

b. Heat loss by radiation:

\[
q = A e \sigma (T_s^4 - T_{\infty}^4) = 4 \pi r^2 e (413 K^4 - 298 K^4)
\]

\(e = 0.89; \sigma = 5.67 \times 10^{-8} \text{ W/m}^2 \text{-K}^4 \)

\[
q = 4 \pi (0.025 m)^2 \times 0.89 \times 5.67E-8 \times (413 K^4 - 298 K^4) = 8.4 \text{ W}
\]

c. % lost as heat:

\[
\% \text{ lost as heat} = \frac{(10.3 + 8.4 \text{ W})}{50 \text{ W}} \times 100 = 37.4\%
\]
3. Air flowing at 5 m/s at 25 °C and 1 atm is used on the outside of a tube bank to condense steam at 100 °C flowing through the tubes. The outer surface temperature of the tubes can be assumed to be 100 °C. The tubes are 1m long and have an outside diameter of 10 mm and inside diameter of 8 mm. The tube bank has 196 total tubes arranged in a square, aligned array with \(S_T = S_L = 15 \) mm.

A. Use Equation 7.64 to determine the total rate of heat transfer to the air.

B. Use Figure 7.13 to find the friction factor and estimate the pressure drop associated with the airflow.

I answered questions about problem 3 saying that you can assume that \(T_{in} = T_{out} \). If so, then the answer is \(q = h \cdot A \cdot (T_s - T_{in}) = 200 \cdot 196 \cdot \pi \cdot 0.01 \cdot 1 \cdot (100 - 25 \cdot C) = 92.3 \text{ kW} \)

If you had assumed (more correctly) that the air heats up, you would have determined that \(T_{out} = 72.3 \text{ °C} \), which is substantially warmer than \(T_{in} \), and the equation for \(q \) would correctly use the log mean temperature difference, as is shown in the solution below... answers may be off.

KNOWN: Surface temperature and geometry of a tube bank. Velocity and temperature of air in cross flow.

FIND: (a) Total heat transfer, (b) Air flow pressure drop.

SCHEMATIC:

- **ASSUMPTIONS:** (1) Steady-state conditions, (2) Negligible radiation, (3) Uniform surface temperature.

PROPERTIES: Table A-4, Atmospheric air \((T_c = 298 \text{ K})\): \(v = 15.8 \times 10^{-6} \text{ m}^2/\text{s}, k = 0.0263 \text{ W/mK} \), \(Pr = 0.707, \rho = 1007 \text{ J/kgK}, \rho = 1.17 \text{ kg/m}^3 ; (T_s = 373 \text{ K}) \), \(Pr = 0.695 \).

ANALYSIS: (a) The total heat transfer rate is

\[
q = hN\pi DL \left(\frac{T_s - T_{in}}{\ln \left(\frac{T_s - T_{in}}{T_s - T_0} \right)} \right) = hN\pi DL \Delta T_{in}.
\]

With \(V_{max} = \frac{8T}{ST - D} = \frac{15}{5} \text{ mm} \) and \(m = 0.63 \) give \(C = 0.27 \), \(m = 0.63 \) and \(C_2 = 0.99 \). Hence, from the Zuber correlation

\[
\bar{Nu} = 0.99 \times 0.27(9494)^{0.63} (0.707)^{0.23} (0.707/0.695)^{1/4} = 75.9
\]

\[
\bar{h} = \frac{Nu_D}{D} = 75.9 \times 0.0263 \text{ W/m} \cdot \text{K}/0.01 \text{ m} = 200 \text{ W/m}^2 \cdot \text{K}
\]

\[
T_s - T_0 = (T_s - T_{in}) \exp \left(-\frac{\pi DH_i}{\rho VnS\gamma s_p} \right) = 75^\circ C \exp \left(-\frac{0.01 \times 196 \times 200}{1.17 \text{ kg/m}^3 \times 5 \text{ m/s} \times 14 \times 0.015 \text{ m} \times 1007} \right) = 27.7^\circ C.
\]

Hence

\[
q = 200 \text{ W/m}^2 \cdot \text{K} \times 20 \times 1 \text{ m} \times (75^\circ C - 27.7^\circ C) = 58.5 \text{ kW}.
\]

(b) With \(Re_{D,max} = 9494, (P_T - 1)(P_L - 1) \) yields \(f \approx 0.32 \) and \(\chi = 1 \). Hence,

\[
\Delta P = N\chi' \left(\frac{\rho V_{max}^2}{2} \right) = 14 \times 1 \left(\frac{1.17 \text{ kg/m}^2 \times (0.63)^2}{2} \right) \approx 0.32
\]

\[
\Delta P = 290 \text{ N/m}^2 = 5.9 \times 10^{-3} \text{ bar}.
\]
4. Consider the tube bank in problem 3.

A. If the 196 tubes were replaced with a single pipe to transport the steam, what (inside) diameter pipe would be required to give the same cross-sectional area as all of the tubes?

B. Assuming this pipe has a 1 mm-thick wall (the same as the tubes above), how long must this pipe be to have the same total heat loss rate as the tube bank in part A? (Use Eq. 7.53) Assume the air is in cross-flow over the pipe, which has a surface T of 100 °C.

A. The cross-sectional area must be the same in both cases.

\[A_c (\text{tubes}) = N \cdot \frac{\pi}{4} \cdot D_i^2 = 196 \cdot \frac{3.14159}{4} \cdot (0.008 \text{ m})^2 \]
\[A_c = 0.00985 \text{ m}^2 \] (note: inside diameter must be used here!)

\[A_c (\text{single pipe}) = 4.92 \text{ m}^2 = \frac{\pi}{4} \cdot D_i^2 \]
\[D_i = (\frac{0.00985 \text{ m}^2 \cdot 4}{3.14159})^{1/2} \]
\[D_i = 0.112 \text{ m} \] (11 cm - over 4 inches)

B. must use outside diameter of the single pipe to find As.

\[A_s = \pi \cdot D_o \cdot L = 3.14159 \cdot (0.112 + 0.002 \text{ wall on both sides}) \cdot L \] (unknown).
\[A_s = 0.358 \text{L} \]

\[q = \text{same as in question 3} = 92300 \text{ W} \]
\[T_s = 100 \text{ C} \]
\[T_{inf} = 25 \text{ C} \]

Using Eq. 7.53,

\[\text{(props @ T}_{inf} = 25\text{C}) \]
\[\text{Nu} = C \cdot \text{Re}^{n} \cdot \text{Pr}^{m} \cdot (\text{Pr}/\text{Pr}_s)^{1/4} \]

\[n = 0.37 \text{ (Pr < 10)} \]
\[C \text{ & } m \text{ depend on Re range} \]

\[\text{Re} = \frac{v \cdot D}{\nu} = 5 \text{ m/s} \cdot 0.112 \text{ m} / (15.89 \cdot 10^{-6} \text{ m}^2/\text{s}) \]
\[\text{Re} = 35,242 \]

so, \[C = 0.26 \text{ and } m = 0.6 \]
\[\text{Pr} = 0.707 \]
\[\text{Pr}_s = 0.695 \text{ (interpolating)} \]

\[\text{Nu} = 0.26 \cdot (35242)^{0.6} \cdot (0.707)^{0.37} \cdot (0.707/0.695)^{1/4} \]
\[\text{Nu} = 122.8 \]
\[h = \text{Nu} \cdot k_f / D_o = 122.8 \cdot 0.0263 \text{ W/mK} / 0.114 \text{ m} \]
\[h = 28.3 \text{ W/m}^2\text{-K} \]

\[q = 92300 = 28.3 \cdot \pi \cdot D_o \cdot L \cdot (100 - 25 \text{ C}) \]
\[L = \frac{92300}{(28.3 \cdot 3.14159 \cdot 0.114 \cdot 75 \text{ C})} \]
\[L = 121 \text{ m. (significantly longer than 1 meter for the tube bundle!)} \]
5. Ethylene glycol at 23 °F passes through a 1-inch schedule 40 steel pipe that has a constant inner surface temperature of 122 °F. The pipe is 60 feet long.

For a flow rate of 3 g/s, determine:
A. The hydrodynamic entry length for fully developed flow (x_{FD,h})
B. The thermal entry length for fully developed flow (x_{FD,t})
C. The convective heat transfer coefficient, h (in either W/m²-K or Btu/h-ft²-°F)
D. The outlet temperature of ethylene glycol in °F (using eq. 8.41 b)
E. The total heat transfer rate in Btu/h. (using eq. 8.34)

Notes: To avoid iterations, you may use 62.6 °F to determine the fluid properties. Also, schedule 40 refers to a specific pipe size; you will need to look up the actual diameter in a piping table (use Perry’s Handbook or perhaps your fluid dynamics book or on-line resources).

First, you need to look up the diameter of 1 inch schedule 40 pipe.
Outside diameter = 1.315 inches, wall thickness = 0.133 inches
Thus the pipe has an inner diameter of 1.049 inches (or 0.0266 m)

Second, the fluid properties can be found in Table A.5:
(at 62.6 °F = 17 °C = 290 K)
density = 1118.8 kg/m³
heat capacity = 2.368 kJ/kg-K
kinematic viscosity = 22.1 * 10⁻⁶ m²/s
Pr = 236
k_f = 0.248 W/m-K
Conversions: Length = 60 feet = 18.29 m
Surface Temperature = T_s = 50 °C = 323 K
Inlet Temperature = 23 °F = -5 °C = 268 K

A & B. entry lengths:
If laminar flow:
\[x_{FD,h} / D = 0.05 \text{ Re}_D \]
\[x_{FD,t} / D = 0.05 \text{ Re}_D \text{ Pr} \]
Need Re!
velocity = mass flow rate / (density * cross-sectional area)
m = 0.003 kg/s
density = 1118.8 kg/m³
\[A_v = \pi/4 * D_i^2 = \pi/4 * (0.0266 m)^2 = 5.56*10^{-4} \text{ m}^2 \]
Thus \(v = 0.00482 \text{ m/s} \)
A. \(\text{Re} = vD/\nu = 0.00482 \text{ m/s} * 0.0266 \text{ m} / 22.1 * 10^{-6} \text{ m}^2/\text{s} = 5.80 \) (REALLY LAMINAR)

| A. \(x_{FD,h} = 0.0266 \text{ m} * 0.05 * 5.80 = 0.0077 \text{ m} = 0.025 \text{ ft} \) (much shorter than the tube)! |
| B. \(x_{FD,t} = 0.0266 \text{ m} * 0.05 * 5.80 * 236 = 1.82 \text{ m} = 5.97 \text{ ft} \) (still much shorter than the tube)! |

C. Convective Heat Transfer Coefficient
h = Nu * k_f / D = f(Re, Pr, k_f, D)
Find h for this flow rate using the proper correlations
Picking Correlations
Is it fully developed or still in the thermal entry region?
This is only important for laminar flow.
Since \(x_{FD} = \sim 6 \text{ ft} \) (much shorter than the tube), the fluid will be fully developed, and Eq. 8.55 can be used: \(\text{Nu} = 3.66 \)
\[\text{Nu} = 3.66 = \frac{h D}{k_f} \]
\[h = 3.66 \times \frac{.248}{0.0266} \text{ W/mK} / 0.0266 \text{ m} \]
\[C. \ h = 34.1 \text{ W/m}^2\text{K} = 6.0 \text{ Btu/h-ft}^2\text{-F} \]

D. Outlet temperature:

\[q = m c_p (T_o - T_i) = \frac{h A}{\text{dTlm}} = h A \frac{(T_o-T_i)}{\ln((T_o-T_i)/(T_s-T_o))} \]

We don’t know \(q, T_o \).

Use equation 8.41 b (page 502), to find the outlet temperature.

\[T_o = T_s - (T_s-T_i) \times \exp \left(-\pi D L h / m c_p \right) \]

\[= 50 \text{ C} - (50- -5 \text{ C}) \times \exp \left(-\pi \times 0.0266 \text{ m} \times 18.29 \text{ m} \times 34.1 \text{ W/m}^2\text{-K})/(0.003 \text{ kg/s} \times 2368 \text{ J/kg-K}) \right) \]

\[D. \ T_o = 49.96 = 50 \text{ oC} = 121.93 \text{ oF} \text{ (the whole fluid warms because the flow rate is so slow!)} \]

E. Use either \(q = m c_p (T_o - T_i) \) OR \(= h A \text{ dTlm} \)

\[q = m c_p (T_o - T_i) = 0.003 \text{ kg/s} \times 2368 \text{ J/kg-K} \times (50 - -5) = 390 \text{ W} \times 3.4121 \text{ Btu/h / W} = 1332 \text{ Btu/h} \]

\[q = h A \text{ dTlm} = 6.0 \times \pi \times 1.049/12 \text{ ft} \times 60 \text{ ft} \times (121.93 - 23) / (\ln (122-23)/(122-121.93)) \]

\[= 714 \text{ Btu/h} \text{ (this has a large degree of error due to how close the outlet temperature is to the surface temperature... the internal energy change is the better way to determine total q here.)} \]
6. Repeat Problem 5 for ethylene glycol flow rates of
 A. 200 g/s, and
 B. 60 kg/s.

 Note: if you need to evaluate a fluid property at the surface temperature, use 350 K.

 C. For all three flowrates (3 g/s, 200g/s, and 60kg/s), if you were asked to run a second iteration
 for each problem, what temperature would you use to look up fluid properties?

 Everything in RED in problem 5 applies to Problem 6A.

 A & B. entry lengths:
 If laminar flow:
 \[x_{FD,h} / D = 0.05 \text{Re}_D \]
 \[x_{FD,t} / D = 0.05 \text{Re}_D \text{Pr} \]
 If turbulent: \(x_{FD,t} = x_{FD,h} = 10 \times D \).
 Need new \(\text{Re}! \)

 velocity = 0.322 m/s
 The only difference from problem 1 is the \(\text{Re} \), which is 100 * bigger than part A.
 \[\text{Re} = vD/\nu = 0.322 \text{ m/s} \times 0.0266 \text{ m} / 22.1 \times 10^{-6} \text{ m}^2/\text{s} = 388 \text{ (LAMINAR)} \]
 A. \(x_{FD,h} = = 0.05 \times 388 \times 0.0266 \text{ m} = 0.52 \text{ m} \text{ (shorter than the tube)} \]
 B. \(x_{FD,t} = 122 \text{ m} = 400 \text{ ft} \text{ (much longer than the tube)} \]

 C. Because of \(x_{FD,t} \), the fluid does not have time to become fully developed in the 60 foot length of
 pipe and equation 8.56 must be used for \(\text{Nu} \). (8.57 won’t work because Pr for EG is too high.)

 For problem 2: \(\text{Nu} = 3.66 + 0.0668 \text{ D/L Re Pr} / (1 + 0.04 \times (\text{D/L Re Pr})^{2/3}) \)
 \[= 3.66 + 0.0668 \times 0.0266 \text{ m} / 18.29 \text{ m} \times 388 \times 236 / (1 + 0.04 \times ((0.0266 \text{ m} / 18.29 \text{ m} \times 388 * 236)^{2/3}) \]
 \[\text{Nu} = 8.01 \]
 C. \(\text{h} = 8.01 \times .248 \text{ W/mK} / 0.0266 \text{ m} = 74.7 \text{ W/m}^2\text{K} \]

 D. Then using equation 8.41 b
 \[T_o = T_s - (T_s-T) \times \exp (-\pi D L h / m c_p) \]
 \[= 50 \text{ C} - (50\text{ C} - 5 \text{ C}) \times \exp (-\pi \times 0.0266 \text{ m} \times 18.29 \text{ m} \times 74.7 \text{ W/m}^2\text{-K})/(0.2 \text{ kg/s} \times 2368 \text{ J/kg-K}) \]
 \[= 6.78 \text{°C} = 44.2 \text{°F} \]
 (at this higher flowrate, the fluid warms only somewhat because the flow rate is faster)
 E. \(q = 0.2 \times 2368 \times (6.8 - 5) = 5590 \text{ W} \times 3.4121 \text{ Btu/h / W} = 19,000 \text{ Btu/h} \]

 For an ethylene glycol flow rate = 60 kg/s

 Everything in RED in problem 5 applies to Problem 6B.

 A & B. entry lengths:
If turbulent: \(x_{FD_t} = x_{FD_h} = 10 \times D \).

Need new Re!

velocity = 96.5 m/s

\(Re = 96.5 \times 10^3 \times \ldots = 116,000 \) (TURBULENT)

A. & B. \(x_{FD_t} = x_{FD_h} = 10 \times D = 2.66 \) m

C. Here the flow is turbulent, so there are 3 choices (8.60, 8.61 and 8.62). 8.60 won’t work since Pr is too large.

either of the other 2 equations is OK to use. 8.61 is a little better since it is for the higher Re numbers, so I will choose that one.

use \(Nu = 0.027 \times Re^{4/5} \times Pr^{1/3} \times \left(\frac{\mu}{\mu_s} \right)^{0.14} \)

\(\mu = 0.0247 \) N-s/m²

\(\mu_s = 0.00342 \) N-s/m²

\(Nu = 0.027 \times 116,000 \times 236^{1/3} \times (0.0247/0.00342)^{0.14} \)

\(Nu = 2478 \)

\(h = 2478 \times \frac{248 \ W/mK}{0.0266 \ m} = 23,100 \ W/m^2K \)

D. \(T_o = T_s - (T_s-T_i) \times \exp(-\pi D L h / m \ cp) \)

\(= 50 - (50 - 5) \times \exp(-\pi \times 0.0266 \ m \times 18.29 \ m \times 23100 \ W/m^2K/60 \ kg/s \times 2368 \ J/kgK) \)

\(T_o = 7.1 \ ^oC = 44.8 \ ^oF \)

(This is a much higher flowrate, so the fluid has little time to pass through the pipe; however, it is more effective than the laminar flow in part B because the turbulence greatly improves the convective heat transfer and much more heat is transferred, giving a slightly higher outlet temperature compared to problem 2.)

E. \(q = 60 \times 2368 \times (7.1 - -5) = 1.72 \ MW \times 3.4121 \ Btu/h / W = 5.87 \times 10^6 \ Btu/h \)

6C. For the three flowrates, if you were asked to run a second iteration for each problem, what temperature would you use to look up fluid properties?

For 3 g/s, new “mean temperature” is \((-5 + 49.96) / 2 = 22.48 \ ^oC = 72.5 \ ^oF.\)

For 200 g/s, new mean fluid temperature is \((-5 + 6.8) / 2 = 0.9 \ ^oC = 33.6 \ ^oF.\)

For 60 kg/s, new mean fluid temperature is \((-5 + 7.1) / 2 = 1.05 \ ^oC = 33.9 \ ^oF.\)
7. Pharmaceutical products are often sterilized by heating prior to packaging. In this case, the pharmaceutical product is heated from 25 to 75 °C by passing it through a 10 m long stainless steel tube with a diameter of 12.7 mm. The tube is wrapped with electrical tape to deliver a constant heat flux into the tube. The fluid enters the tube with a fully developed velocity profile and a uniform temperature at a flowrate of 0.2 m/s.

Fluid properties: density = 1000 kg/m³; heat capacity = 4000 J/kg-K, viscosity (µ) = 0.002 kg/s-m, thermal conductivity = 0.8 W/m-K, Pr = 10.

A. What heat flux is required to reach 75 °C at the outlet?
B. What is the surface temperature on the inside of the pipe at the exit?

KNOWN: Inlet and outlet temperatures and velocity of fluid flow in tube. Tube diameter and length

FIND: Surface heat flux and temperatures at x = 0.5 and 10 m

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions. (2) Constant properties. (3) Negligible heat loss to surroundings. (4) Incompressible liquid with negligible viscous dissipation. (5) Negligible axial conduction.

PROPERTIES: Pharmaceutical (given): ρ = 1000 kg/m³, c_p = 4000 J/kg K, µ = 2 × 10⁻³ kg/s·m, k = 0.80 W/m·K, Pr = 10.

ANALYSIS: With

\[m = \rho V A = 1000 \, \text{kg/m}^3 \times (0.2 \, \text{m/s}) \times (0.0127 \, \text{m})^2 / 4 = 0.0253 \, \text{kg/s} \]

Eq. 8.3 yields

\[q = m c_p (T_{m, o} - T_{m, i}) = 0.0253 \, \text{kg/s} \times (4000 \, \text{J/kg} \cdot \text{K}) \times 50 \, \text{K} = 5060 \, \text{W}. \]

The required heat flux is then

\[q_s = q/A_s = 5060 \, \text{W/π(0.0127 m)10 m} = 12.682 \, \text{W/m}^2. \]

With

\[Re_D = \rho V D / \mu = 1000 \, \text{kg/m}^3 \times (0.2 \, \text{m/s}) \times 0.0127 \, \text{m} / 2 \times 10^{-3} \, \text{kg/s} \cdot \text{m} = 1270 \]

the flow is laminar and Eq. 8.23 yields

\[x = 0.05 Re_D Fr D = 0.05 (1270) \times 10 (0.0127 \, \text{m}) = 8.06 \, \text{m}. \]

Hence, with fully developed hydrodynamic and thermal conditions at x = 10 m, Eq. 8.53 yields

\[h(10 \, \text{m}) = N u_{D, g} (k/D) = 4.36 \times (0.80 \, \text{W/m} \cdot \text{K}/0.0127 \, \text{m}) = 274.6 \, \text{W/m}^2 \cdot \text{K}. \]

Hence, from Newton's law of cooling,

\[T_{s, 0} - T_{m, o} = \left(q_s / h \right) - 75°C + \left(12.682 \, \text{W/m}^2 / 274.6 \, \text{W/m}^2 \cdot \text{K} \right) - 121°C. \]
8. Work Incropera and DeWitt Problem 8.51.

Note: "thin-walled" in the problem means that the thermal resistance due to conduction through the pipe can be ignored. This is often the case in heat exchanger-type problems, because the thermal conductivity of the metal pipe is usually not a significant barrier to heat transfer compared to the convection terms on both sides of the pipe. Also, note that "slowly flowing" can be used to mean that the flow is laminar; assume that the pipe is long enough that the flow is fully developed.

KNOWN: Oil flowing slowly through a long, thin-walled pipe suspended in a room.

FIND: Heat loss per unit length of the pipe, \(q_{\text{conv}} \).

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) Tube wall thermal resistance negligible, (3) Fully developed flow, (4) Radiation exchange between pipe and room negligible.

PROPERTIES: Table A-5. Unused engine oil \((T_m = 150^\circ\text{C} = 423\text{K})\): \(k = 0.133 \text{ W/m-K} \).

ANALYSIS: The rate equation, for a unit length of the pipe, can be written as

\[
q_{\text{conv}} = \frac{(T_m - T_\infty)}{R_t'}
\]

where the thermal resistance is comprised of two elements,

\[
R_t' = \frac{1}{h_i \pi D} + \frac{1}{h_o \pi D} = \frac{1}{\pi D} \left(\frac{1}{h_i} + \frac{1}{h_o} \right).
\]

The convection coefficient for internal flow, \(h_i \), must be estimated from an appropriate correlation. From practical considerations, we recognize that the oil flow rate cannot be large enough to achieve turbulent flow conditions. Hence, the flow is laminar, and if the pipe is very long, the flow will be fully developed. The appropriate correlation is

\[
Nu_D = \frac{h_i D}{k} = 3.66
\]

\[
h_i = Nu_D \frac{k}{D} = 3.66 \times 0.133 \frac{\text{W}}{\text{m} \cdot \text{K}} / 0.030 \text{ m} = 16.2 \text{ W/m}^2 \cdot \text{K}.
\]

The heat rate per unit length of the pipe is

\[
q_{\text{conv}} = \frac{(150 - 20)^\circ\text{C}}{\pi (0.030\text{m}) \left(\frac{1}{16.2} + \frac{1}{11} \right) \text{m}^2 \cdot \text{K} / \text{W}} < 80.3 \text{ W/m}.
\]

COMMENTS: This problem requires making a judgment that the oil flow will be laminar rather than turbulent. Why is this a reasonable assumption? Recognize that the correlation applies to a constant surface temperature condition.