Lab Inspection Form

Date: ________________

Location: ________________

Inspected by: ________________

Lab owner: ________________

Does this lab contain:

- Radiation hazards? Yes No
- Biological Agents? Yes No
- Lasers? Yes No
- Hoods? Yes No How many?
- Eye wash? Yes No
- Safety shower? Yes No
- Is there a proper hazard notice located at entrance? Yes No
- Are evacuation signs posted near lab exit? Yes No
- Are there TAL restricted activities? Yes No
- Is contact information posted outside room? Yes No

☐ N/A I. Chemical Inspection

1. Are reasonable security measures being followed in the lab area? Y N
2. Are two exits for the lab area (if necessary)? Y N
3. No eating, drinking, smoking, handling contact lenses, applying cosmetics, or storing human food in lab: Y N
4. Security
 a. Was the door locked when EHS arrived? Y N
 b. If the door was unlocked, was someone present in the lab? Y N
5. Are work areas and/or bench tops clean? Y N
6. Are pathways clear of obstructions? Y N
7. Waste management
 a. Are waste receptacles present? Y N
 b. Is there any storage of boxes, old equipment, etc. in lab: Y N
 c. Are lab personnel aware of trash procedures? Y N
8. Equipment Maintenance
 a. What kind of equipment is present in the lab?
 b. Is equipment regularly inspected? Y N
 c. Are written records of equipment maintenance and inspections kept readily available? Y N
 d. Is mechanical equipment furnished with guards? Y N
 e. Is shielding in use? Y N
 f. Are there adequate covers and cover locks, where needed? Y N

9. Computers
 a. Is there a computer in the lab area? Y N
 b. Is it used for lab data and results? Y N
 c. Is it networked? Y N
 d. Is any of the lab/research information restricted? Y N

10. Is glassware being used appropriately? Y N

11. Flammables
 a. Is there a flammable cabinet? Y N
 b. Are non-flammable items stored in the flammable cabinet? Y N
 c. Are flammable items stored outside the flammable cabinet? Y N
 d. Does signage restrict open flames? Y N

12. Are plugs grounded and in good condition? Y N

13. Gas cylinders
 a. Are compressed gas cylinders stored upright? Y N
 b. Are compressed gas cylinder caps in place if not connected to equipment? Y N
c. Are compressed gas cylinders mounted and/or chained in place? Y N
d. Are compressed gas cylinders stored away from ignition sources? Y N

14. Hoods
 a. Hood type and size (if known):
 b. Have hoods been surveyed recently? (See EHS for data)
 c. Is there a hood flow monitor with alarm? Y N

15. Documentation
 a. Does the lab have access to the MSDS for each chemical used or stored?
 b. Is the location/access of MSDS explained or displayed? Y N
 c. Is chemical inventory tracked through CEMS? Y N
 d. Are lab safety plans, SOP’s, training documentation, etc. in place and available? Y N

16. Personal Protection Equipment
 a. Is PPE designated by signage? Y N
 b. Is there evidence of PPE being used: Y N

17. Cleanup procedures
 a. Is a spill containment kit in the lab? Y N
 b. Is it prominently located? Y N

18. Unwanted chemicals:
 a. Are there unwanted chemicals in the lab? Y N
 b. If so, are they labeled properly? Y N
 c. Are there lids on all waste containers? Y N

19. Chemical storage
 a. Are hazardous chemicals labeled properly (Including special hazards, identification of contents, etc)? Y N
b. Are chemicals stored properly (Including segregation and secondary containers, etc)? Y N

c. Are proper precautions utilized for hazardous chemicals? Y N

d. Is bench top storage restricted? Y N

e. Are all chemicals stored below six feet? Y N

20. If animals are evident in lab, is there proper signage for allergens, hazards, etc?

21. NOTES:
Agents in use: ____________________________

Lab type: Research Teaching Graduate Undergraduate

□ N/A II. Biological Inspection

1. Biosafety Level 1-Standard Microbiological Practices
 a. Lab access is limited/restricted when experiments or work with cultures/specimens are in progress. Y N
 b. Lab personnel wash hands after handling viable materials, removing gloves, or leaving lab. Y N
 c. No eating, drinking, smoking, handling contact lenses, applying cosmetics, or storing human food in lab. Y N
 d. Contact lens users wear safety glasses, goggles, or face shields. Y N
 e. Food is stored outside lab in designated cabinets/refrigerators. Y N
 f. Mechanical pipetting devices are used (no mouth pipetting). Y N
 g. Sharps handling policies/practices in place. Y N
 h. Procedures are in place to minimize splashes/aerosols. Y N
 i. Work surfaces are decontaminated at least daily and/or at completion of work. Y N
 j. Work surfaces are decontaminated after any spill/splash of viable material. Y N
 k. Cultures/stocks/regulated wastes are decontaminated by approved method (e.g., autoclaving) before disposal. Y N
 l. Materials decontaminated outside of lab are transported in durable, leak-proof, closed containers. Y N
 m. Biohazard signage posted at lab entrance when infectious agents are present (signage lists agents and PI name/phone). Y N
 n. Insect/rodent control program in effect. Y N
 o. Lab workers are aware of and enforce security restrictions to the lab at all times. Y N
2. Biosafety Level 1-Safety Equipment
 a. Lab coats, gowns, and uniforms are worn. Y N
 b. Gloves are worn if skin on hands is broken or has rash. Y N
 c. Safety glasses are worn when performing procedures that pose a splash risk outside of a BSC. Y N

3. Biosafety Level 1-Laboratory Facilities
 a. Lab has adequate lighting. Y N
 b. Lab has doors for access control. Y N
 c. Lab has a sink for hand washing. Y N
 d. Lab designed to be easily cleaned (e.g., no carpets/rugs, spaces between cabinets/equipment/furniture are accessible, etc.). Y N
 e. Bench tops are impervious to water and resistant to heat, organic solvents, acids, alkalis, and disinfectants. Y N
 f. Lab furniture/equipment is suitable for intended use/loads. Y N
 g. Lab windows that open to the outside are fitted with fly screens. Y N

4. Biosafety Level 2 ONLY-Standard Microbiological Practices
 a. Disinfectants are labeled for agents being used. Y N

5. Biosafety Level 2 ONLY-Special Practices
 a. Personnel at risk of acquiring infections or for whom infections may have serious consequences are denied access to lab. Y N
 b. All personnel are advised of potential hazards prior to entering/working in lab. Y N
 c. Posted biohazard signage includes biosafety level, required immunizations, required PPE, and required lab exit procedures. Y N
 d. Lab personnel are appropriately immunized against or tested for the agents being used (e.g., HBV vaccinations, TB skin test). Y N
 e. Baseline and periodic serum samples are collected/stored as required. Y N
f. Lab director has incorporated biosafety procedures into lab SOP’s or has adopted/prepared a lab-specific Biosafety Manual. Y N

g. Lab personnel have read and follow biosafety procedures/practices. Y N

h. Lab personnel are trained on the potential hazards, precautions to prevent exposures, and evaluation procedures. Y N

i. Lab personnel receive annual refresher training and/or additional training as necessary. Y N

j. Needle/syringe use is kept to absolute minimum. Y N

k. Only needle-locking syringes or syringes with permanently affixed needles are used for injection/aspiration of infectious materials. Y N

l. Syringes that “re-sheath” the needle or needless systems are used when appropriate. Y N

m. Disposable needles are not bent, sheared, broken, recapped, removed from disposable syringes, or otherwise manipulated prior to disposal. Y N

n. Plastic ware is substituted for glassware whenever possible. Y N

o. Sharps containers are labeled, conveniently located, and puncture resistant. Y N

p. Non disposable sharps containers are hard-walled and leak proof. Y N

q. Broken glassware is only handled by mechanical means. Y N

r. Sharps containers are decontaminated (e.g., autoclaved) prior to disposal or reprocessing. Y N

s. Cultures, tissues, specimens, or infectious wastes are kept in covered, leak-proof containers during collection, handling, processing, storage, transport, or shipment. Y N

t. Lab equipment and work surfaces decontaminated on routine basis with effective disinfectant. Y N

u. Lab equipment is decontaminated prior to sending it for repair/maintenance, or packaging it for shipment. Y N

v. Spills/accidents are immediately reported to the lab director. Y N

w. Animals not involved in work are not allowed in lab. Y N
6. Biosafety Level 2 ONLY-Safety Equipment
 a. Lab coats, gowns, or uniforms are removed and left in lab before leaving for non-lab areas. Y N
 b. Protective clothing is either disposed of in the lab or laundered on-site by the institution. Y N
 c. Gloves are worn if hands are at risk on contacting infectious materials, infected animals, or contaminated surfaces/equipment. Y N
 d. Gloves are not worn outside lab or when touching “clean” surfaces (e.g., telephones, keyboards, elevator buttons, etc.). Y N
 e. Gloves are disposed of when overtly contaminated, work with infectious materials is completed, or integrity is compromised. Y N
 f. Disposable gloves are not reused. Y N
 g. Goggles or face shield used when performing procedures that pose a splash risk outside of a BSC. Y N
 h. Class II BSC or equivalent are used for procedures that have potential to create aerosols or splashes. Y N
 i. Class II BSC or equivalent are used for work with high concentrations (>10^8 cfu/ml) or large volumes (>1 liter) of infectious agent. Y N

7. Biosafety Level 2 ONLY-Laboratory Facilities
 a. Labs where “select agents” are used or stored have lockable doors. Y N
 b. No fabric upholstered/covered furniture or chairs. Y N
 c. Labs are located away from public areas. Y N
 d. BSC not located near doors or windows that can be opened. Y N
 e. Eyewash station and safety shower is readily available. Y N

8. NOTES:
III. Laser Inspection

1. Laser-Specific Data
 a. CEMS inventory number? Y N
 b. Location in lab: __________________________
 c. Type: __________________________
 d. Manufacturer: __________________________
 e. Make: __________________________
 f. Model: __________________________
 g. Class: __________________________
 h. Serial number: __________________________
 i. Wavelengths (nm): __________________________
 j. Output (max/used): __________ W or J
 k. Pulsed? Y N If yes:
 i. Pulse energy (J): __________________________
 ii. Pulse length (s): __________________________
 iii. Repetition rate (Hz): __________________________
 iv. Pulse time envelope (s): __________________________
 l. Beam diameter (mm): __________________________
 m. Beam divergence (mrad): __________________________
 n. Output irradiance E (W/cm²): __________________________
 o. MPE: __________________________
 p. Minimum OD: __________________________
 q. Laser Q-switched or mode locked: __________________________
 r. Laser active or inactive: __________________________
2. Warning signs and labels:
 a. Are warning signs properly posted at entrances? Y N
 b. What type of signs are posted? ____________________________
 c. Is room security adequate? Y N
 d. Is there a door interlock system? Y N
 e. Is there a laser status indicator outside room? Y N
 f. Is there a laser class label in place? Y N
 g. Is there a laser hazard label in place? Y N
 h. Is there a laser aperture label in place? Y N
 i. Is there a key control for on/off switch (class 3b and 4 only)? Y N
 j. Is the key removed when laser is off? Y N
 k. Is the key secured when not in use? Y N
 l. Is there an activation indicator on laser? Y N
 m. Is there a power indicator on laser? Y N
 n. Are there protective housing interlocks? Y N
 o. Are the protective housing interlocks functioning? Y N
 p. Is the protective housing intact: Y N If no:
 i. Is access restricted and the area controlled? Y N
 ii. Is PPE available? Y N
 iii. Are there barriers, curtains, beam stops, etc? Y N
 iv. Is this addressed in SOP? Y N

3. Laser unit safety controls:
 a. Is there a beam shutter present? Y N
 b. Is the beam shutter functioning? Y N
 c. Is there a beam power meter? Y N
 d. Is emergency shutoff available? Y N
4. Is the manufacturer’s operational manual available? Y N
5. Is the laser sublicense up to date and available? Y N
6. Is the SOP written, available, and up to date (last revision date:)? Y N
7. Have all users and sublicensees completed initial training? Y N
8. Have all applicable users and sublicensees completed annual training? Y N
9. Is documentation of training maintained in the laser safety program notebook? Y N
10. Are authorized users and training dates listed? Y N
11. Is documentation of training available? Y N
12. Does training include general safety precautions & NHZ descriptions? Y N
13. Does it outline personal protective equipment requirements and use (including approved eyewear)? Y N
14. Does it describe start-up, use, and shut down procedures? Y N
15. Does it describe alignment procedures?
16. Does it include emergency procedures? Y N
17. Are current laser safety guidelines posted? Y N
18. Is laser safety policy manual available? Y N
19. Is all documentation maintained in the laser safety program notebook? Y N
20. Are all injuries reported to PI and EHS? Y N
21. Are all injuries investigated by LSO? Y N
22. Is the laser secured to table? Y N
23. Are laser optics secured to prevent stray beams? Y N
24. Is the laser at eye level? Y N
25. Is the beam enclosed? Y N
26. Bare beam barriers in place? Y N
27. Are beam stops in place? Y N
28. Can you view the beam remotely? Y N
29. Is the beam condensed or enlarged? Y N
30. Is the beam focused? Y N
31. Is the beam intensity reduced through filtration? Y N
32. Are fiber optics used? Y N
33. Are the windows in the room covered? Y N
34. Are reflective materials kept out of beam path? Y N
35. Is beam management documented? Y N
36. Is there any physical evidence of stray beams? Y N
37. If laser is a class 4, is there a diffuse reflection hazard? Y N
38. Is the entire room/lab designated as a laser control area? Y N
39. Is the beam visible? Y N

40. Other Laser Safety Measures:
 a. Is an eye exam required? Y N
 b. If required, are eye exams completed? Y N
 c. Is there proper laser eye protection available? Y N
 d. Is the required manufacturer information for eyewear maintained? Y N
 e. Is eyewear inspected and cleaned periodically? Y N
 f. Is proper skin protection available? Y N
 g. Is there eating, drinking, smoking, handling contact lenses, applying cosmetics, or storing human food in the lab? Y N

41. Non Beam Hazards:
 a. Is toxic laser media in use? Y N
 b. Is a fume hood available if needed? Y N
 c. Are cryogens in use? Y N
 d. Are compressed gasses in use? Y N
 e. Is there a high voltage power hazard? Y N
f. Are optical tables properly grounded? Y N
g. Is there a collateral radiation hazard? Y N
h. Is there an explosion hazard? Y N
i. Is there a fire hazard? Y N
j. Are there any airborne contaminant hazards? Y N
k. Is there adequate housekeeping? Y N
l. Is there any LGAC production? Y N
m. NOTES:

IV. Security Issues

V. Physical Hazards